Classification Puzzle Test for Bank Exam

Sequence and Series Questions for Bank Po

Nov 22 • Bank, Maths Notes • 906 Views • No Comments on Sequence and Series Questions for Bank Po

Sequence and Series Questions for Bank Po                                      

Sequence and Series Questions for Bank Po, IBPS, SBI  government exam

Arithmetic Progression: If the difference between any two consecutive terms of a sequence is same,  then the sequence  is said to be arithmetic progression. It is denoted by A.P.

Example :  1,5,9,13,17,……………

-2,-5,-8,-11,-14,…………..

nth term or last term of an A.P. is given by the formula

a= a + (n-1) d

Where   a = first term of an A.P.,

              d = common difference

              n = number of terms

Arithmetic mean between any two given quantities a and b = (a+b)/2

Sum of first n terms of an A.P.

s= n/2 [2a + (n-1)d] or

s = n/2 [2a +l]

Where    l = the last term of an A.P.

Geometric progression: If the ratio of any two consecutive terms of a sequence is same then the sequence is said to be in geometric progression. It is denoted by G.P

Example 1,1/2, 1/4, 1/8,1/16,……………………….

3, -9/4, 27/16, -81/16,…………….

nth term of a G.P. is given by the formula

a= arn-1

Where      a = first term

                R = common ratio

Sequence and Series Questions for Bank Po

Sum of n terms of G.P.
s= a (r-1)/ r-1,                    if r ≠1  and

s= an ,                                  if r = 1

Sum of infinite terms  of a G.P. in case of  -1 < r <1

sn= a/(1-r)

Geometric mean between any two given quantities a and b = √ab                                              

Join Best Exam Preparation group on Telegram 

Harmonic progression: a sequence a,b,c,d,…………is said to be in harmonic progression if 1/a,1/b,1/c,1/d,………………  is in A.P.

Example: ½,¼,⅙,……………..

Harmonic mean between any two given quantities a and b = 2ab/(a+b)

Top Bank Coaching in Chennai

Sum of special type of series:

  • The sum of first n natural numbers i.e. 1+2+3+………+n = n (n+1)/2
  • The sum of squares of first n natural numbers i.e.12+22+….+n= n (n+1) (2n+1)/6
  • The sum of cubes of first  n natural numbers i.e. 12+…….+n= n(n+1) 2/4
  • The sum of first n odd natural numbers  = n2
  • The sum of first n even natural numbers = n+ n
  • The sum of squares of even natural numbers up to n= n (n+1)(n+2)/6
  • The sum of squares of odd natural numbers up to n= n (n+1)(n+2)/6

                                                                                                                   

                                  WORKED -OUT PROBLEMS

  1. In the sequence of numbers 0, 7, 26, 63, ….., 215, 342 the missing term is

      Answer: 124

                     0 = 1– 1

                     7 = 2– 1

                     26 = 3– 1

                     63 = 4– 1

       So missing number is = 5– 1 = 124

   2) Which number in the sequence 41, 43, 47, 53, 61, 71, 73, 81, is wrongly written ?

   Answer:  81

   In the sequence, all numbers are prime except 81

Best Books for all government exam

   3) the sum (101 + 102 + 103 + …………..+ 200) is equal to

    Answer : 15050

     This is an A.P. with first term (a) = 101 , last term (l) = 200 and common difference = 1

    an= a + (n – 1) d

     200 = 101 + n-1

     n= 200 – 101 + 1 = 100

     Sum = n/2 [a+l]

             = 100/2 [101+200]

             = 50*301

            = 15050

    4) If the 4th term of an arithmetic progression is 14 and the 12th term is 70, then the first term is

    Answer: -7

    4th term = a= a + (4-1) d

                          = a + 3d = 14                                                          (1)

    12th term = a12 = a + (12 – 1) d

                             = a + 11d = 70                                                     (2)

    Subtract (1) from (2) , we get

     8d = 56

      d = 7

    Put the value of d in (1)

    a + 21 = 14

    a = -7

    5) Find the value of  1 – 1/20 + 1/20– 1/20+……………………. Correct to 5  places of Decimal is

    Answer: 0.95238

     This is an infinite  geometric progression with  a = 1 and  common ratio = -1/20

Sum = a/(1 – r)

        = 1/(1 + 1/20)                                                                                             

        = 1/(21/20)

       = 20/21

       = 0.9523809

       = 0.95238 (up to 5 decimal)

This Question asked by Best Bank Coaching

6) Find the sum of the first n terms of the series

   5 + 55 + 555 + 5555 +…………………

Answer: 50/81 × (10– 1) –5/9n

5 + 55 + 555 + …………. up to n terms

5 (1 + 11 + 111 + …………up to n terms )

5/9 (9 + 99 + 999 + ……….up to n terms)

5/(10-1 + 100-1 + 1000 – 1 +…………..up to n terms)

5/9 (10 + 100 + 1000 +…………..up to n terms – n)

5/9 × 10 (10– 1) 10 – 1 – 59n

50/81 × (10– 1) – 59n

7) When simplified, the sum  1/2  + 1/6  + 1/12 + 1/20 + 1/30 + ………. + 1/n (n+1) is equal to

Answer: n/(n+1)

1/2  + 1/6  + 1/12 + 1/20 + 1/30 + ………. + 1/n (n+1)

= 1/(1*2) + 1/(2*3) + 1/(3*4) + 1/(4*5) +…………..+ 1/n (n+1)

= 1/1 – 1/2 + 1/2- 1/3  + 1/3 – 1/4 + 1/4 – 1/5 +………….+1/n – 1/(n+1)

= 1-1/(n+1)

= (n+1-1)/(n+1)

= n/(n+1)

8) Find the sum of the following series
1/1*4+ 1/4*7+1/7*10+1/10*13+ 1/13*16

Answer: 5/16

1/1*4+ 1/4*7+1/7*10+1/10*13+ 1/13*16

= 1/3[3/1*4+ 3/4*7+3/7*10+3/10*13+ 3/13*16]

=13(1 – 1/4  + 1/4  – 1/7  + 1/7 – 1/10 + 1/10 – 1/13 + 1/13 – 1/16 )

= 1/3(1 – 1/16)

= 1/3(15/16)

= 5/16                                                                                                                   

9) 1 + (3 +1 ) (32+ 1)  (34+ 1)  (38+ 1)  (316+ 1)  (332+1) is equal to  

Answer: (332+ 1)/2

1 + (3 +1 ) (32+ 1)  (34+ 1)  (38+ 1)  (316+ 1)  (332+1)

=1 + (3 – 1) [(3 +1 ) (32+ 1)  (34+ 1)  (38+ 1)  (316+ 1)  (332+1)]/3-1

= 1 +  (3 – 1)(3 +1 ) (32+ 1)  (34+ 1)  (38+ 1)  (316+ 1)  (332+1)/2

= 1+(32– 1)  (32+ 1)  (34+ 1)  (38+ 1)  (316+ 1)  (332+1)/2

= 1+(34– 1) (34+ 1)  (38+ 1)  (316+ 1)  (332+1)/2

= 1 + (38– 1)  (38+ 1)  (316+ 1)  (332+1)/2

= 1 +(316– 1)  (316+ 1)  (332+1)/2

= 1 + (332-1) (332+1)/2

=1 + (364-1)/2

=( 2 + 364– 1 )/2

= (364+ 1)/2

10) Given that 13+ 23+ 33+ ………….+ 103= 3025, the value of 23+ 43+ 63+………….+ 203 is equal to

Answer: 24200

23+ 43+ 63+………….+ 203

= 8 (1+ 2+ 3+ ………….+ 103)

= 8*3025

= 24200

  1. 9  23  75  ?  1543  9267

2. 253                 b. 307           c. 356               d. 411              e. 457

Join us on Telegram and Facebook for BANK Exam is also asked in other government exam like BANK IBPS SO RRB SSC. This note has been prepared by  Ms. Supriya Kundu is of one of best teacher in this field.If any question please ask in below.

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

« »